Kosuke Masuda, Riku Omokawa, Riku Kawasaki, Yuta Mise, Yousuke Ooyama, Shogo Harada, Wataru Shinoda, Atsushi Ikeda
Chem. Eur. J. 29, e202203071 (2022).
In this study, trimethyl-β-cyclodextrin (TMe-β-CDx) and γ-cyclodextrin (γ-CDx) could dissolve a tetraphenylethylene derivative (TPE-OH4) in water through high-speed vibration milling. The fluorescence intensity of the TMe-β-CDx-TPE-OH4 complex was much higher than that of the γ-CDx-TPE-OH4 complex, as the rotation of the central C=C double bond of TPE-OH4 after photoactivation was inhibited in a smaller TMe-β-CDx cavity in comparison with the γ-CDx cavity. In contrast, the fluorescence intensity of the γ-CDx-TPE-OH4 complex was very weak; nevertheless, it increased after the addition of liposomes due to the transfer of TPE-OH4 from the γ-CDx cavity to the lipid membrane as a "turn-on" phenomenon. Furthermore, to apply temperature sensor, we demonstrated that the fluorescence intensity in the liposome depended on the phase transition temperature. By using the fluorescence turn-on phenomenon, TPE-OH4 could detect the presence of HeLa cells and E. coli by fluorescence.